3.472 \(\int \frac{x}{(d+e x) \sqrt{a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=139 \[ \frac{\tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{\sqrt{c} \sqrt{d} e^{3/2}}-\frac{2 d \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e (d+e x) \left (c d^2-a e^2\right )} \]

[Out]

(-2*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e*(c*d^2 - a*e^2)*(d + e*x)) + ArcTanh[(c*d^2 + a*e^2 + 2*
c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])]/(Sqrt[c]*Sqrt[d]*e^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.109496, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.079, Rules used = {792, 621, 206} \[ \frac{\tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{\sqrt{c} \sqrt{d} e^{3/2}}-\frac{2 d \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e (d+e x) \left (c d^2-a e^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[x/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(-2*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e*(c*d^2 - a*e^2)*(d + e*x)) + ArcTanh[(c*d^2 + a*e^2 + 2*
c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])]/(Sqrt[c]*Sqrt[d]*e^(3/2))

Rule 792

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d*g - e*f)*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/((2*c*d - b*e)*(m + p + 1)), x] + Dist[(m*(g*(c*d - b*e)
+ c*e*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p,
x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((L
tQ[m, -1] &&  !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{(d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=-\frac{2 d \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \left (c d^2-a e^2\right ) (d+e x)}+\frac{\int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{e}\\ &=-\frac{2 d \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \left (c d^2-a e^2\right ) (d+e x)}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{e}\\ &=-\frac{2 d \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \left (c d^2-a e^2\right ) (d+e x)}+\frac{\tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt{c} \sqrt{d} e^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.418805, size = 189, normalized size = 1.36 \[ \frac{2 \sqrt{c d} \left (c d^2-a e^2\right )^{3/2} \sqrt{a e+c d x} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )-2 c^{3/2} d^{5/2} \sqrt{e} (a e+c d x)}{c^{3/2} d^{3/2} e^{3/2} \left (c d^2-a e^2\right ) \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(-2*c^(3/2)*d^(5/2)*Sqrt[e]*(a*e + c*d*x) + 2*Sqrt[c*d]*(c*d^2 - a*e^2)^(3/2)*Sqrt[a*e + c*d*x]*Sqrt[(c*d*(d +
 e*x))/(c*d^2 - a*e^2)]*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])])/
(c^(3/2)*d^(3/2)*e^(3/2)*(c*d^2 - a*e^2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.055, size = 131, normalized size = 0.9 \begin{align*}{\frac{1}{e}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+2\,{\frac{d}{{e}^{2} \left ( a{e}^{2}-c{d}^{2} \right ) }\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) } \left ({\frac{d}{e}}+x \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

1/e*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)+2*d/
e^2/(a*e^2-c*d^2)/(d/e+x)*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.51495, size = 922, normalized size = 6.63 \begin{align*} \left [-\frac{4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} c d^{2} e -{\left (c d^{3} - a d e^{2} +{\left (c d^{2} e - a e^{3}\right )} x\right )} \sqrt{c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{c d e} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}{2 \,{\left (c^{2} d^{4} e^{2} - a c d^{2} e^{4} +{\left (c^{2} d^{3} e^{3} - a c d e^{5}\right )} x\right )}}, -\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} c d^{2} e +{\left (c d^{3} - a d e^{2} +{\left (c d^{2} e - a e^{3}\right )} x\right )} \sqrt{-c d e} \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \,{\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} +{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right )}{c^{2} d^{4} e^{2} - a c d^{2} e^{4} +{\left (c^{2} d^{3} e^{3} - a c d e^{5}\right )} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*c*d^2*e - (c*d^3 - a*d*e^2 + (c*d^2*e - a*e^3)*x)*sqrt(c*
d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)
*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x))/(c^2*d^4*e^2 - a*c*d^2*e^4 + (c^2*d^3
*e^3 - a*c*d*e^5)*x), -(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*c*d^2*e + (c*d^3 - a*d*e^2 + (c*d^2*e -
a*e^3)*x)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt
(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)))/(c^2*d^4*e^2 - a*c*d^2*e^4 + (c^2*d^3*e
^3 - a*c*d*e^5)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(x/(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError